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Abstract—The deployment of small (< 1-2 MW) clusters of 

generators, heat and electrical storage, efficiency investments, 

and combined heat and power (CHP) applications (particularly 

involving heat activated cooling) in commercial buildings 

promises significant benefits but poses many technical and 

financial challenges, both in system choice and its operation; if 

successful, such systems may be precursors to widespread 

microgrid deployment. The presented optimization approach to 

choosing such systems and their operating schedules uses 

Berkeley Lab’s Distributed Energy Resources Customer 

Adoption Model [DER-CAM], extended to incorporate electrical 

storage options. DER-CAM chooses annual energy bill 

minimizing systems in a fully technology-neutral manner. An 

illustrative example for a San Francisco hotel is reported. The 

chosen system includes two engines and an absorption chiller, 

providing an estimated 11% cost savings and 10% carbon 

emission reductions, under idealized circumstances.  

 
Index Terms—buildings, building management systems, 

cogeneration, cooling, cost optimal control, dispersed storage and 

generation, distributed control, optimization methods, power 

system economics, power system planning 

I.  INTRODUCTION 

erein, the working definition of a microgrid is: a cluster 
of electricity sources and (possibly controllable) loads 
that are connected to the traditional wider power system, 

or macrogrid, but which may, as circumstances or economics 
dictate, disconnect from it and operate as an island, at least for 
short periods [1,2,3,4]. The successful deployment of 
microgrids will depend heavily on the economics of 
distributed energy resources (DER) in general, and upon the 
early success of small clusters of mixed technology 
generation, possibly grouped with storage, controllable loads, 
and other potential microgrid elements. If clear economic, 
environmental, and utility system benefits from such early 
projects are realized, momentum can propel the adoption of 
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added microgrid capabilities as well as precipitate the 
regulatory adjustments necessary to allow widespread 
microgrid introduction.  

The potential benefits of microgrids are multi-faceted, but 

from the adopters’ perspective there are two major groupings, 

1) the cost, efficiency, and environmental benefits (including 

possible emissions credits) of combined heat and power 

(CHP), plus 2) the security, quality, reliability, and 

availability (SQRA) benefits of on-site generation and control. 

And indeed, the economic, electrically stable, and safe 

operation and control of such free-standing small-scale 

systems create new challenges for electrical engineers.  

At the same time, it should be noted that growth in 

electricity demand in the developed countries centers on the 

residential and commercial sectors in which CHP applications 

particularly (and SQRA control to a lesser extent) have not 

hitherto been well developed; furthermore, the relative 

absence of attention to CHP and SQRA reflects some real 

technical challenges posed by commercial and residential 

applications. 

This paper reports on the latest in a series of efforts 

intended to improve the prospects for successful deployment 

of early microgrid technology in the commercial sector, and 

the approach could be applied also to residences. In previous 

work, the Berkeley Lab has developed the Distributed Energy 

Resources Customer Adoption Model (DER-CAM), which is 

described in more detail in the appendix [5]. Optimization 

techniques find both the combination of equipment and its 

operation over a typical year that minimize the site’s total 

energy bill, typically for electricity plus natural gas. The 

chosen equipment and its schedule should be economically 

attractive to a single site or to members of a microgrid 

consisting of a cluster of sites, and it should be subsequently 

analyzed in more engineering and financial detail. In this 

work, electrical storage is added as an option to the prior 

menu of technology choices, and this capability is 

demonstrated by the analysis of a prototypical San Francisco 

hotel.  

II.  DER IN BUILDINGS 

The importance of the commercial sector in electricity 

consumption in developed countries can be seen by three 

multiplicative factors. 1. The share of all energy being 

consumed as electricity increases, e.g. in the U.S. from 13% in 

1980 to about 20% today. 2. The commercial sector uses a 

growing share of all electricity, e.g. in the U.S. from 27% in 

1990 to 35% in 2005. And 3., typically an increasing share of 

electricity is generated thermally as carbon-free hydro sources 
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are fully exhausted, although the shares of carbon-free nuclear 

vary widely across grids. The product of these factors means 

the carbon footprint of commercial buildings can grow 

rapidly, but changes in the fuel mix, e.g. more natural gas 

fired generation, can also have a big effect. Further, in warm 

climates such as most of the U.S. and Japan, and for an 

increasing share of Europe, commercial sector cooling is a 

key driver of peak load growth, and hence the stress to and 

investment in the macrogrid. Consequently, deployment of 

DER in buildings, especially CHP technologies for cooling, is 

central to containing the growth of electricity consumption 

and its associated carbon emissions.  

Yet despite the importance of DER in the commercial 

sector, current analysis of DER implementation in buildings is 

limited. System sizing often relies on heuristic rules based on 

the relative size of heat and electricity requirements. Further, 

the detailed building energy modeling that is frequently done 

during building design to assist in the selection of energy 

systems relies on quite limited programs [6]. Their on-site 

generation capability is often limited to modeling a few 

generation sources, such as photovoltaic panels (PV), and 

possibly some heat recovery devices. And typically, the 

usefulness of the analysis rests heavily on user capability and 

motivation. Although DER can offer a variety of economic, 

environmental, and remote macrogrid benefits, such as 

enhanced demand response, the lack of DER assessment tools 

is a major hurdle to widespread DER adoption. Developers 

are lacking the ability to assess the cost, energy use, and 

carbon and criteria pollutant implications of DER options, and 

their ability to identify optimal equipment combinations and 

operating strategies is limited at best. This gap is particularly 

damaging for DER incorporating CHP because equipment 

selection and operations can be complex in building 

applications, often involving multiple technologies, 

combinations of electricity purchase and self-generation, and 

highly varied scheduling to follow the occupancy, weather, 

and other variations in building requirements. Consequently, 

DER with CHP is rarely explored for buildings too small to 

justify specialized engineering, e.g. with peak electrical loads 

approximately below the 1-2 MW range, and particularly 

waste heat driven cooling is rarely analyzed, despite the 

importance of cooling to both building requirements and 

utility system loads in warm climates.  

Electrical and/or thermal storage technologies that allow 

decoupling of electricity generation and heat use in building 

CHP systems are potentially cost effective. They permit 

charging and discharging during periods when each is 

economic, which is obviously potentially beneficial. More 

subtly, storage allows decoupling of the electricity and heat 

balances, with the later being much more forgiving. For 

example, deviations from target building temperature settings 

for periods of minutes to hours may be acceptable (or at least 

negotiable, given potential cost savings), whereas practically 

speaking, AC electrical systems require a precise energy 

balance at all times. This asymmetry, while it offers potential 

financial motivation, further complicates analysis of building 

CHP systems. Only active storage systems are considered in 

this work, but passive storage, e.g. heat storage in the building 

shell itself, might also provide benefits. Note the contrast 

between building CHP applications with traditional 

(principally industrial) experience. The latter are typically 

applications with favorable balances of heat and electricity 

requirements and processes operate in a steady state for 

extended periods (preferably from an economic perspective, 

24/7). 

III.  DER-CAM 

DER-CAM solves the commercial building DER 

investment optimization problem given a building’s end-use 

energy loads, energy tariff structures and fuel prices, and an 

arbitrary list of equipment investment options [7]. The 

approach is fully technology-neutral and can include energy 

purchases, on-site conversion, both electrical and thermal 

onsite renewable harvesting, and end-use efficiency 

investments. Further, system choice considers the simultaneity 

of the building cooling problem; that is, results reflect the 

benefit of displacement of electricity demand by heat 

activated cooling that lowers building peak load and therefore 

the generation requirement. Regulatory, engineering, and 

investment constraints are all considered. Energy costs are 

calculated using a detailed representation of utility tariff 

structures and fuel prices, as well as amortized DER 

investment costs, and operating and maintenance (O&M) 

expenditures. For a specific site, the source of end-use energy 

load estimates is typically building energy simulation using a 

model based on the DOE-2 engine, such as eQUEST, or the 

more advanced but less user-friendly EnergyPlus [8,9]. 

The output from DER-CAM is a cost minimizing 

equipment combination for the building, including CHP 

equipment and renewable sources. The model chooses the 

optimal combination, fully taking the simultaneity of choices 

into account. The results of DER-CAM suggest not only an 

optimal (potentially mixed technology) microgrid, but also an 

optimal operating schedule that can serve as the basis for a 

microgrid control strategy; however, the rigors of 

optimization necessitate simplification of many real-world 

engineering constraints that would in practice necessarily be 

addressed through more detailed engineering analysis and 

system design. 

Optimal combinations of equipment involving PV, thermal 

generation with heat recovery, thermal heat collection, and 

heat activated cooling can be identified in a way that would be 

intractable by trial-and-error enumeration of possible 

combinations. The economics of storage are particularly 

complex, both because they require optimization across 

multiple time steps and because of the influence of tariff 

structures. Note that facilities with on-site generation will 

incur electricity bills more biased toward demand (peak 

power) charges, and less toward energy charges, making the 

timing and control of chargeable peaks of particular 

operational importance. Similarly, if incentive tariffs that 

share the macrogrid benefits of DER with the microgrid are 
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available, the operational problem is further complicated 

because identifying any potential contribution to the 

macrogrid would likely be intractable without optimizing 

algorithms.  

This paper reports results using recently added electrical 

storage capabilities, both electrical and thermal storage being 

viewed as inventories At each hour, energy can either be 

added (up to the maximum capacity) or withdrawn (down to a 

minimum capacity to avoid damaging deep discharge). The 

rate at which the state of charge can change is constrained, 

and the state of charge decays hourly. The parameters used for 

the electrical and thermal storage models are shown in the 

following Table 1. 

  
TABLE 1 

ENERGY STORAGE PARAMETERS 

 
description electrical thermal

charging 

efficiency

portion of energy 

input to storage that is 

useful 0.9 0.9

decay
portion of state of 

charge lost per hour 0.001 0.01

maximum 

charge rate

maximum portion of 

rated capacity that 

can be added to 

storage in an hour 0.25 0.25

maximum 

discharge rate

maximum portion of 

rated capacity that 
can be withdrawn 

from storage in an 

hour 0.25 0.25

minimum 

state of 

charge

minimum state of 

charge as a portion of 

rated capacity 0.3 0  

IV.  SAN FRANCISCO HOTEL EXAMPLE 

An example analysis was completed of a prototypical San 

Francisco hotel operating in 2004. This hypothetical facility 

has 23 000 m2 of floor space and a peak electrical load of 

690 kW. Table 2 shows the prices used, which are local 

Pacific Gas and Electric (PG&E) rates obtained from the 

Tariff Analysis Projects database [10]. Natural gas prices 

(shown in two units) for the region were obtained from the 

Energy Information Administration web site [11]. A marginal 

carbon emission factor of 140 g/kWh for electricity purchased 

from PG&E was assumed [12]. 

The menu of available equipment options to DER-CAM for 

this analysis together with their cost and performance 

characteristics is shown in Table 3. Technology options in 

DER-CAM are categorized as either discretely or 

continuously sized. This distinction is important to the 

economics of DER because equipment becomes more 

expensive in small sizes. Discretely sized technologies are 

those which would be available to customers only in a limited 

number of discrete sizes and DER-CAM must choose an 

integer number of units, e.g. microturbines. Continuously 

sized technologies are available in such a large variety of sizes 

that it can be assumed capacity close to the optimal could be 

acquired, e.g. battery storage. The installation cost functions 

for these technologies are assumed to consist of an 

unavoidable cost (intercept) independent of installed capacity 

($), plus a cost proportional to capacity ($/kWh). 

 
TABLE 2 

INPUT ENERGY PRICES  

 
TABLE 3 

MENU OF AVAILABLE EQUIPMENT OPTIONS 

Discrete Investments

fuel 

cell

capacity (kW) 200 60 100 200 500
installed cost 

($/kW) 5005 1826 1576 900 785
installed cost 

with heat 

recovery 

($/kW) 5200 2082 1769 1250 1050
variable 

maintenance 

($/kWh) 0.029 0.015 0.015 0.015 0.012
efficiency 

(LHV) 0.35 0.25 0.26 0.295 0.297
lifetime (a) 10 10 10 20 20

Continuous Investments
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fixed cost ($) 295 10,000 20,000 1,000 1,000
variable cost 

($/kW or 

$/kWh) 193 100 115 150 4,240

reciprocating 

engine
microturbine

 
     DER is not necessarily more energy or carbon efficient 

than central station generated power bought from the grid. For 

example, simple cycle on-site generation of electricity using 

reciprocating engines at this site would be more carbon 

intensive than procurement from PG&E; however, using waste 

heat to offset thermal or electrical loads can improve the 

overall carbon efficiency. Because incentive payments are 

usually motivated by efficiency or carbon abatement 

objectives, qualifying constraints on minimum DER efficiency 

Electricity

electricity 

($/kWh)

demand 

($/kW)

electricity 

($/kWh)

demand 

($/kW)

all hours 2.55

on-peak 0.16 11.80

mid-peak 0.10 2.65 0.11 2.65
off-peak 0.09 0.00 0.09 0.00

Natural Gas

0.03 $/kWh
0.94 $/therm

summer winter
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are often imposed. Although California has these, they are not 

applied in this analysis. 

 
TABLE 4 

ANNUAL RESULTS 
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equipment investment

reciprocating 

engines (kW) 2x200 1x200 1x200
absorption 

chiller (kW) 550 585 585

solar thermal 

collector (kW) 722 722

electrical storage 

(kWh) 1100

thermal storage 

(kWh) 299

annual costs (k$)

electricty 427 127 214 224
NG 32 199 121 126
DG 0 80 67 56

total 459 406 402 406
% savings 11.5% 12.4% 11.5%

annual energy consumption (GWh)

electricity 3.67 1.18 2 1.94
NG 0.98 6.86 4.16 4.33

annual carbon emissions (t/a)

emissions 562 503 485 485
% savings 10.4% 13.7% 13.7%  

 

V.  RESULTS 

Four DER-CAM runs were performed: 1. A do nothing 

case in which all DER investment is disallowed. 2. An invest 

run which finds the optimal DER investment. 3. A low storage 

price run as a sensitivity. 4. Finally, to assess the value of 

storage systems, a run was performed forcing the same 

investments as in the low storage price case but in which 

storage is disallowed.  

 

 

0

200

400

600

800

1000

1200

1 5 9 13 17 21hour

th
e
rm

a
l 
p

o
w

e
r 

(k
W

)

heat load heat and abs. chiller load

CHP heat

thermal
storage

solar thermal

storage charging

natural gas
combustion

 
Fig. 1. Low storage price diurnal heat pattern for a January day 
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Fig. 2. Low storage price diurnal electricity pattern for a January day 
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Fig. 3. Low storage price diurnal heat pattern for a July day 
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Fig. 4. Low storage price diurnal electricity pattern for a July day 
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The major results for these four runs are shown in Table 4. 

The optimal system consists of two gas engines and an 

absorption chiller. Relative to the “do nothing” case, the 

expected annual savings for the optimal DER system are 

$53 000/a (11.5%) and the elemental carbon emissions 

reduction is 59 t/a (10.4%). 

In the low storage price case, both avoidable electrical and 

thermal storage costs are set to zero plus an avoidable 

$40/kWh cost. A more complex DER system results in which 

some generation capacity is replaced by storage and solar 

thermal collection, but the annual costs are reduced by less 

than one additional percentage point compared to the low 

storage price case. In other words, the added value of the 

storage and other complexity is very modest in this example. 

There is a large difference between the DER systems in the 

last three cases and yet only minor difference in their energy 

cost, which suggests a flat objective function near the 

minimum. It is also likely that results would be sensitive to 

factors not considered in this analysis, such as risk and site 

configuration. Please also note that these results are estimated 

assuming perfect reliability of DER equipment. Imperfect 

reliability would mostly directly affect the demand charges, 

but would also have other effects on the value of the project to 

the site.  

The graphics in Figures 1 and 2 above show example DER-

CAM operating results for the thermal and electrical balances 

of the hotel on typical days in January and July 2004 from the 

low storage price case. Note that the optimal technologies are 

a 200 kW reciprocating engine, a 585 kW (166 refrigeration 

tons) absorption chiller, 722 kW of solar thermal collectors, 

1100 kWh of electrical storage, and 299 kWh of thermal 

storage. While the economics of this case are not compelling, 

even with subsidized storage, it is presented in detail to 

demonstrate the scheduling capability of DER-CAM. 

The area underneath the solid black line in these figures is 

the hourly energy demand. Area above the solid black line 

indicates storage charging. The various patterns in the graphs 

indicate the source of the energy. For electrical loads (Figures 

2 and 4) the lower profile indicates the portion of the electric 

load that can be met by only electricity, whereas the solid line 

above it is the total electric load, including cooling. Note that 

electric cooling loads can be offset by the absorption chiller. 

For thermal loads (Figure 1 and 3) the lower line indicates the 

heat required for heating, whereas the solid black line 

indicates the total thermal load, including heat required for the 

absorption chiller. 

 

VI.  CONCLUSIONS 

Limiting the growth of electricity consumption in 

commercial buildings is particularly important for carbon 

abatement in developed countries. Unfortunately, the 

promising approach of deploying CHP (especially cooling) 

technology faces major challenges. Use of better building 

energy analysis and design tools can accelerate the adoption 

of CHP, and thereby facilitate deployment of microgrids that 

can additionally deliver SQRA benefits. Both thermal and 

electrical storage capability have been added to DER-CAM, 

making it a more useful optimization tool for on-site 

generation selection and operation. The new capabilities have 

been demonstrated by an analysis of a prototypical San 

Francisco hotel. Results show the wide range in complexity of 

optimal systems and the likely carbon emissions reductions.  It 

should be noted that although the example demonstrated 

herein has primarily focused on the optimal choice of 

investments, optimization of run-time operational schedules 

are implicit in the method, and examples are reported as 

figures. 

Incorporation of electrical storage into DER-CAM will 

facilitate analysis of emerging transportation technologies. For 

example, the adoption of plug-in hybrids as personal 

transportation, with their on-board electrical storage offer an  

on-site load leveling opportunity at minimal additional 

investment, with potential for additional reduction in carbon 

emissions. Note that payments for the storage capability of 

vehicles, as well as for other possible services, such as rapid 

response load following, could make the economics of such 

transportation modes more favorable and accelerate their 

deployment. The integration of such features into DER-CAM 

is a promising topic for further investigations.       

VII.  APPENDIX 

DER-CAM identifies optimal technology-neutral DER 
investments and operating schedules at a given site, based on 
available DER equipment options and their associated capital 
and O&M costs, customer load profiles, energy tariff 
structures, and fuel prices. The Sankey diagram in Figure A1 
shows partially disaggregated site enduses on the right-hand 
side, and energy inputs on the left. As an example, the 
refrigeration and cooling load may be met in one of multiple 
ways, including standard electrically powered compressor 
cooling, direct fire or waste heat activated cooling, or direct 
gas engine powered compressor cooling (not included in the 
hotel example analysis above). DER-CAM solves this entire 
problem optimally and systemically. Figure A2 shows a high 
level schematic of inputs to and outputs from the model. 
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Fig. A1. Energy flows in buildings from fuels to end uses 

 
DER-CAM is particularly suited to evaluating combined 

heat and power (CHP) opportunities since it selects the 

optimal combination of DER investment options, fully taking 

their interdependence into account, e.g., if there is a tradeoff 

between thermally activated cooling and on-site generator 

capacity, DER-CAM obtains the combination of the two that 

minimizes cost. Thus, optimal combinations of equipment 

involving PV, thermal generation with heat recovery, solar 

thermal collection, and thermally activated cooling can be 

identified in a way that would be intractable by trial-and-error 

testing of all possible combinations.  

 

 
Fig. A2. High level schematic of the inputs and outputs of DER-CAM 

 

DER-CAM is implemented as a mixed integer linear 

program in the General Algebraic Modeling System (GAMS) 

using the CPLEX solver. A high level description of the 

model logic is shown in Figure A3. Siddiqui et al. provides a 

more detailed description [5]. The run time of a single year 

execution of DER-CAM that finds the optimal investment 

decision and hourly on-site generation schedule for a given 

site is roughly ten minutes on a typical PC.  

 

MINIMIZE 

Annual energy cost:

energy purchase cost 

+ amortized DER technology capital cost 

+ annual O&M cost

SUBJECT TO

Energy balance:

- Energy purchased + energy generated exceeds demand

Operational constraints:

- Generators, chillers, etc. must operate within 

installed limits

- Heat recovered is limited by generated waste heat 

Regulatory constraints:

- Minimum efficiency requirements

- Maximum emission limits

Investment constraints:

- Payback period is constrained

Storage constraints:

- Electricity stored is limited by battery size

- Heat storage is limited by reservoir size

 
Fig. A3. Optimization problem solved by DER-CAM 



pppaaapppeeerrr   tttooo   bbbeee   ppprrreeessseeennnttteeeddd   aaattt   ttthhheee   IIIEEEEEEEEE   222000000777   PPPooowwweeerrr   EEEnnngggiiinnneeeeeerrriiinnnggg   SSSoooccciiieeetttyyy   GGGeeennneeerrraaalll   MMMeeeeeetttiiinnnggg,,,       

TTTaaammmpppaaa   CCCooonnnvvveeennntttiiiooonnn   CCCeeennnttteeerrr,,,    222444---222888   JJJuuunnneee   222000000777,,,    TTTaaammmpppaaa   FFFLLL   

7 

 

VIII.  ACKNOWLEDGMENTS  

The work described in this report was funded by the Office 
of Electricity Delivery and Energy Reliability, Distribution 
System Integration Program of the U.S. Department of Energy 
under Contract No. DE-AC02-05CH11231. It also builds on 
work previously supported by the Consortium for Electric 
Reliability Technology Solutions with funding provided by 
the California Energy Commission, Public Interest Energy 
Research Program, under Work for Others Contract No. 500-
03-024. 

The authors also acknowledge the contributions of prior 
members of the DER-CAM development team, Kristina 
Hamachi LaCommare and Nan Zhou. 

 

IX.  REFERENCES 

[1] For more background on microgrids, please see the presentations from 
the two Symposiums on Microgrids held at Berkeley, USA in June 
2005, and near Montreal, Canada in June 2006, available at 
http://der.lbl.gov  

[2] R. H. Lasseter, A. Akhil, C. Marnay, J. Stephens, J. Dagle, R. 
Guttromson, A.S. Meliopoulos, R. Yinger, and J. H. Eto, “Integration 
of Distributed Energy Resources: The CERTS MicroGrid Concept,” 
LBNL-50829, Apr. 2002, available at http://der.lbl.gov 

[3] N. D. Hatziargyriou, ed., special issue on microgrids, International 

Journal of Distributed Energy Resources, 2006/2007. 
[4] C. Marnay and G. Venkataramanan, “Microgrids in the Evolving 

Electricity Generation and Delivery Infrastructure,” in Proc. 2006 IEEE 

Power Engineering Society General Meeting, Montreal, Canada, 19-22 
June 2006. 

[5] A. S. Siddiqui, C. Marnay, R. Firestone, and N. Zhou, “Distributed 
Generation with Heat Recovery and Storage,” Journal of Energy 

Engineering (in press), also available as Berkeley Lab Report LBNL-
58630 at http://der.lbl.gov  

[6] M. Stadler, R. Firestone, D. Curtil, and C. Marnay. “On-Site 
Generation Simulation with EnergyPlus for Commercial Buildings,” in 
Proc. of the ACEEE 2006 Summer Study on Energy Efficiency in 

Buildings, Asilomar CA, 13-19 Aug. 2006. 
[7] sources: EIA form 826 and the International Energy Agency 
[8] http://doe2.com/equest/  
[9] http://www.eere.energy.gov/buildings/energyplus/  
[10] K. Coughlin, R. White, C. Bouldoc, D. Fisher, and G. Rosenquist, “The 

Tariff Analysis Project: A Database and Analysis Platform for 
Electricity Tariffs,” Berkeley Lab Report LBNL-55680, 
http://tariffs.lbl.gov 

[11] http://www.eia.doe.gov   
[12] L. Price, C. Marnay, J. Sathaye, S. Murtishaw, D. Fisher, A. Phadke, 

and G. Franco, “The California Climate Action Registry: Development 
of Methodologies for Calculating Greenhouse Gas Emissions from 
Electricity Generation,” in Proc. 2002 ACEEE Summer Study on 

Energy Efficiency in Buildings, Asilomar Conference Center, Pacific 

Grove, CA, 18-23 Aug. 2002.  
 
 



pppaaapppeeerrr   tttooo   bbbeee   ppprrreeessseeennnttteeeddd   aaattt   ttthhheee   IIIEEEEEEEEE   222000000777   PPPooowwweeerrr   EEEnnngggiiinnneeeeeerrriiinnnggg   SSSoooccciiieeetttyyy   GGGeeennneeerrraaalll   MMMeeeeeetttiiinnnggg,,,       

TTTaaammmpppaaa   CCCooonnnvvveeennntttiiiooonnn   CCCeeennnttteeerrr,,,    222444---222888   JJJuuunnneee   222000000777,,,    TTTaaammmpppaaa   FFFLLL   

8 

X.  BIOGRAPHIES 

 
Bala Chandran is a Ph.D. candidate in the 
Department of Industrial Engineering and Operations 
Research at the University of California at Berkeley, 
and a research assistant at Berkeley Lab. His research 
interests are in large-scale optimization and 
modeling, with applications to aviation, supply chain 
management, telecommunications, and energy 
resources. He holds a Bachelor of Technology in 
Civil Engineering from the Indian Institute of 
Technology, Madras, and a Master of Science in 

Business and Management from the University of Maryland at College Park. 
 
 
 

 

Ryan Firestone is a Ph.D. candidate in mechanical 
engineering at the University of California, Berkeley. 
His doctoral research is on the optimal dispatch of 
DER in stochastic systems. He received a Bachelors 
degree from Brown University in 1997 and a 
Masters degree from the University of Texas El Paso 
in 2001, both in mechanical engineering. He has 
researched distributed generation as a research 
assistant at the Lawrence Berkeley National 
Laboratory from 2002 until the present. 

 

 

 

 

Chris Marnay is a Staff Scientist in the Electricity 
Market Studies group within the Energy 
Environmental Technologies Division of Berkeley 
Lab. He leads work on modeling of restructured 
electricity markets, and the organization of small-
scale generators into microgrids. He specializes in 
problems concerning likely future adoption patterns 
of small scale DER, especially those involving 
commercial building use of heat activated cooling, 
and renewables. He has an A.B. in Development 

Studies, an M.S. in Agricultural and Resource Economics, and a Ph.D. in 
Energy and Resources, all from the University of California, Berkeley. 
 

 

 

 

 

Afzal Siddiqui is a Lecturer in the Department of 
Statistical Science at University College, London. His 
research interests lie in investment and operational 
analysis of electricity markets. In particular, he 
focuses on distributed generation investment under 
uncertainty, optimal scheduling of distributed 
generation, real options analysis of renewable energy 
technologies, and demand response. He holds the 
following degrees in industrial engineering and 
operations research: a B.S. from Columbia 

University, New York, an M.S. and a Ph.D. from the University of 
California, Berkeley.  

 
 
 

Michael Stadler joined Berkeley Lab as a student in 
2002, returned as Post-Doctoral Fellow in 2005, and 
is currently a Visiting Scholar. He also supported the 
University of California, Berkeley’s Pacific Region 
CHP Application Center, where he conducted site 
analyses of varied commercial, agricultural, and 
industrial CHP projects. Previously, he worked with 
the Energy Economics Group at the Vienna 
University of Technology, from which he holds a 

Masters degree in electrical engineering and a Ph.D. summa cum laude in 
energy economics. His fields of research are distributed energy, electricity 
markets, and demand response.  
 
 

 

Giri Venkataramanan (M’92) received a B.E. in 
electrical engineering from the Government College 
of Technology, Coimbatore, India, an M.S. from the 
California Institute of Technology, Pasadena, and a 
Ph.D. from the University of Wisconsin, Madison in 
1986, 1987 and 1992 respectively. After teaching at 
Montana State University, Bozeman, he returned to 
Madison as a faculty member in 1999, where his 
research continues in various areas of electronic 

power conversion. He serves as Associate Director of the Wisconsin Electric 
Machines and Power Electronics Consortium (WEMPEC). He holds six U.S. 
patents and has coauthored more than a hundred technical publications. 
 


